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SUMMARY

A graphical method is presented for calculating the linearized
1ift distribution on thin wings at supersonic speeds., The technigue
may be applied to all wing reglons except those influenced by inter-
acting flow fields off the wing-plan boundaries., The lifting-
pressure coefficients are obtained as the sum of & graphical line
integration and several terms that are functions of only the plan
form.,

Pressure coefficients obtained by the graphical method for a
swept trapezoidal wing and for a wing with stralght-swept leading
edge and parabolic wing-tip are compared with those derived by
closed-form integration. The lift distributions for two plan forms
previously unsolved are also included.

INTRODUCTION

The evaluation of the theoretical performance of arbltrarily
shaped wings at supersonic speeds has been retarded by the complex-
ities involved in analysis when the wing boundaries are other than
certein prescribed curves, usually streight lines. Solutions for
the velocity potential on an arbitrary wing surface are presented
in references 1 and 2 except for those regions influenced by inter-
acting flow fields off the wing-plan boundaries; the integrals
involved, however, have been tebulated only for special plan forms.
Although the integrals may be so reduced that numerical evaluation
of the velocity potential is feasible, the procedure for obtaining
the 1lift distribution requires an additional numerical partial dif-
ferentiation that 1s cumbersome and of doubtful accuracy.

The lift distributions for a family of thin wings may be obtained
by the methods of reference 2 as the sum of an algebraic function
and a line integral. The line integral may be evaluated by numerical
or graphical methods.
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A graphical method formulated at the NACA Cleveland laboratory
for evaluating the lift distribution for wings of arbitrary plen
form within the limitations of reference 2 is presented. Also
included for a Mech number of 42 are curves showing the relations
between the algebraic functions and the geometry of the wing. The
application of the method to the various types of region encountered
in analyses of general wings is discussed. As illustrations, the
pressure coefficients obtained by this graphical method are compared
with those derived by closed-form integration for a swept trapezoldal
wing and for a wing with a straight leading edge and parabolic wing-
tip boundaries. Lift distributions of two other plan forxms are algo
included to 1llustrate the application of the method.

SYMBOLS
The followlng symbols and subscripis are used in this report:

82y 8z5+ o o8y coefficients in serlies expansion defining curvae-
ture of leadlng edge

a', b', c', 4 quantities used in determining factor AF,

Cy ¢ o Cy coefficients in series representation of AFo

Cp pressure coefficient -

ACP contribution to CP of portion of leading edge
included in segment of width ¢

Py factor representing integral-function contribu-
tion to CP

Fz factor representing contribution of integration
over width ¢ *to Cp

AFo error in F, due to neglecting curvature

H gquantity representing numericel integration
along leading edge, AnXh

h parameter defining equilasteral hyperbola

ky constant determining sweep of straight leading

edge



972

NACA TN No. 1676

U, v

ug(v) or vp(u)

vy (1) or ui(v)

X, ¥

Subscripts:
0

L

free-stream Mach number
slope of wing edge, %
geries defining curvature of leading edge

Vo = 7p(up)

ratio of dlstances, -—/———
2 -uw - -uz

local redius of curvaturs

free-stream velocity (parallel to x-axis)

oblique coordinates whose axes lie parallel to
Mach lines

equation of tip and tralling edge of wing

equation of supersonic leading edge of wing
(inboard of foremost tangent Mach wave)

Cartesian coordinates

transformed y-coordinate

angle of attack, radlans

Bz - 1

width of strip chosen in evaluating Fp

local angles between wing edge and free-strean
flow direction

Cartesian coordinates of point sources

perturbation-velocity potential

intersection of grid edge wlth wing-plan boundary

leading edge of wing
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2 left
r right
w wing

ANALYSIS

As a result of the linearized theory, the effect of angle of
attack on the lift distribublion of thin wings at supersonic speeds
depends upon the plan-form boundaries and 1s Independent of the
wing-gection slopes. Determination of the pressure distributlon of
e thin flat plate therefore solves the problem of the 1lift distri-
bution of the finite-thickness wing. Reference 2 shows that the
local pressure coefficients of several classes of wings with arbi-
trary plan boundaries may be evaluated by line 1ntegra.ls of explicit
functions.

A graphical method of evaluating the lift-distribution functions
presented in reference 2 is developed herein. In order to illus-
trate the method developed, & slmple wing Ilncluding regions influ-
enced by a supersonic leading edge, a subsonic leading edge, and a
subsonic trailing edge (fig. 1) is discussed in detail, The essen-
tlal elements in the calculations for each region are included in
the analysis for the region B influenced by the subsonic leading

edge.

The pressure coefflclient for reglon B as derlved in refer-
ence 2 l1g

=M dn
P B L‘n 1/(uw-u) (v = 7)

du / - v1(up)
d.vf,.) -lug (2)

vhere uz 1s evaluated at v = w,. Except for the symbol 1,
equation (1) is expressed in a set of obligque coordinates (fig. 2)
whose axes are parallel to the Mach lines. The transformation
equations relating the oblique and Cartesian coordinates are

C
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\
u=§M§(§-Bn) V=-2’-%(§+ﬁn)
g:%(v+u) T]=D—]&(V-u)
" > (2)
uw=§M§(x-By) Vi = 3g (x + 87)
x=%(vw+uw) y=l—]&(vw-uw))

The significance of the terms of equation (1) is clarified in
figure 3. The line integral is to be evaluated along the portion
of the supersonic leading edge from & %o b. _The guantity
(v - v1(up)] can be interpreted as distance bc and the quantity
(u, - up) can be interpreted as the distance cP. The ratlo of
these distances is called R. For a given Mach number, the quan-

&
ity ( 1l - a—:—z-> depends upon only the slope of the wing boundary
W
at the point (ugz,wy).

By use of equations (2), the second term of equation (1) may
be expressed in terms of R and the angle 03 that the wing edge

mekes with the free-streem flow dlrection (parallel to the x-axis)
as

2 dug
Fl=ﬁ<l-m>ﬁ

48 tan 69 ﬁ (3)

= M (B tan 67 + 1)

where 67 1is positive counterclockwlse, This expression, eval-
uated for M ='\/—é—, appears in figure 4,

The quantities (u, - u) and (W - v) 1in the line integrel
of equation (1) are the coordinate distances (fig. 3) of each
element dn +to the point (w,,v;). The curves of

1 . _
Wf(uw — (Vw =3 ="constant = h
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in the u,v coordinate system are e family of equilateral hyper-
bolag asymptotic to the lines wu = uy, v = vy;e A family of these

hyperbolas is showm in figure 5.

If a "grid" of this type is placed with its origin at (u,,v,)
and so allned that its axes are parallel to the u and v axes,

the value of L for any element dn (or dy) is

Y(ug - 0) (v - 7)
the constant h for the hyperbola passing through that element.
The sum of the values of h ‘taken near the center of each element
for equal increments dn along the wing boundary then evaluates
the line integral of equation (1). The superposition of a wing-
plen boundary on & hyperbolic grid for M =42 is shown in fig-
ure 6., A constant value of An i1s marked on the grid for conven-
lence in summation. A part of the grid employed for calculatlons
at M =42 appears in figure 7.

Ag shown in figure 5, the value of h increases to infinity
a8 the edge of the grid 1s approached. In order to perform a
numerical lntegration, the infinities must be excluded. Therefore
the numerical summation should not start with element 1 (fig. 6)
but should skip a distance large enough to emable the element
value to be easlily determined. The part of the inbtegral omitted
must be compensated by an analybtical expression that represents
the contribution of & sectlon of the leading edge a&' included
in a strip of width ¢ (fig. 8).

The contribution to the line Ilntegral of the strip of width ¢
may be evaluated by assuming the wing boundsry to be a straight
line near u = uy. From the derivation presented in appendix 4,
this contribution is

Fp = 4B tan~1 zem(v - o) -
MA/(m3 - 1)(@mB + 1) Me(1 + Bm)

1 (4)

where m = g, the tangent of the angle 6 (positive counter-

clockwise) that the leading edge mekes with the flow direction at
the intersection with the edge of the grid (point a, fig. 6), and
(v = Vo) 1s the distance aP from that point to the grid origin

(fig. 6). The value of Fp for various values of 63, (v - o),

2Lé
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and € 1is shown in figure 8 for M = Y2, The dashed line in fig-
ures 8(b) snd 8(c) represents the limit for which the arc-tangent
term in equation (4) 1s real,

For the subsonic leading edge (region B, fig. 1), equations (1),
(3), and (4) may be combined and the expression for the pressure
coefficlient becomes

CP=-%(H+FI+F2) (5)

where the numerical swmation along the leading edge is repre-
sented by

E=4n (h) +hg +hz + . . .) = 4AnZh

If nonuniform increments of 17 are desired, a weighting of each
value of h 1s required.

The enalysis of the region of a wing tip influenced by a sub-
sonic tralling edge (region C, fig. 1) may be appreciebly shortened
if the RKutte-Joukowski condition is imposed. In reference 2, it
is shown that the solution which satlisfies the Kutta-Joukowskl con-
dition does not contain the texm F,. Therefore F; is taken as

zero in this region and the remalning evaluation is unchanged.

When evaluating Cp in a region where v<O0 (region A,
fig. 1, or fig. 9) » the value F; does not exist because no sub-
gonlc leading edge is included in the forward Mach cone from
point P, The integration must be conducted over the entire wing
leading edge between the limits of the grid a and b. Because
h Dbecomes infinite at the right as well as at the left 1limit of
the grid, a part of the integration at the right must be replaced
by an analytical expression similar to equation (4). Equation (4)
can be shown to hold at this limit if (uy - ug) 1s substituted
for (w; - vg) and (180° - @3) is substituted for 6p. If the
value of this expression is designated Fa,p ‘the pressure coef-
ficient In the region where v<0 hecomes

Cp = - % (E + Fp + Fp ) _ (Sa)

In general, a complete wing in supersonic flow may have regions
under the influence of both wing tips. A summsry of the method of
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obtaining lift distributions in the various types of flow field
comumonly encountered 1s given in appendix B. Also included is a
numerical evalustion of the pressure coefficient at point P of
figure 10.

The effect of Mach number on lift dlstribution for a given
plan form may be determined by two alternate procedures. One
method is to construct an integration grid and curvegs of F; and
Fo for the Mach number desired. If a large number of analyses at
a glven Mach number are to be made, this method may be preferable.
If only a very fow anslyses at a glven Mach number are to be made,
however, the grid and curves of F; and Fp may be used as con-
structed for M =42 » provided that compensating corrections are
made., These corrections consist in: (1) so transforming the wing
boundary that y* = By; and (2) analyzing the wing as at M = 42
and dividing the resultent Cp/a by the value of B.

Some considerations: that simplify the application of the
method appear in appendix C. Construction of the integration grid,
cholce of An and ¢, drawing slze, and a speclal example of the
subsonlc treiling edge are dlscussed.

ACCURACY OF METHOD

In order to determine the accuracy of the method, the pressure
coefficient at points on two wings for which analytical expressions
were obtainable were graphically computed and compared with the
enalytical velues. The wings and the points conslidered appear Iin
figure 1l. The leading edges of both wings are swept back 30° and
are the same except that wilng A has a straight tlp and wing B has
a parabolic tip passing through similar points on the leading and
trailing edges. The points consldered are at the same x,y values
for each wing. The results of the computations for CP are pre-~
gented in table I,

The magnitude of the personal error Incurred in application
of the method was ewvaluated by trial. 7Values of Cp/a were inde-
pendently obtained by nonprofessional personnel using the graphical
method, and were also analytically calculated. For wing A, the results
of one of the computers contained an average error of 0.46 percent
and a maximum error of 0.71 percent (table I). Another compubter
averaged an error of 0,53 percent with & maximum error of 1l.52 per-
cent. Results of wing B gave about the same accuracy (table I).
These resulis were obtalned from drawings with a wing chord of
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4% inches., The computers estimated & tlme rate of approximately

5 minutes per point when a large number of poilnts were being
anslyzed.

Inasmuch es the flrst-order expression for Fs (which also
includes higher-order terms) assumed & straight leading edge, this
expression was exact for the wings shown in figure 1ll. The accuracy
of this expression for a curved edge has been investigated aznd is
shown in appendix A, For a parabolic leading edge, the error AFs
in Fz (including fourth-order terms) as a function of the ratio
e/ro ‘(where ro 1s the radius of curvature) 1s presented in fig-
ure 12, If e€/rg is emall, the exrror in Fp due to curvature
will be smell except when 6, approaches the Mach angle, as indi-
cated in figure 1l2. The corresponding error in Cp will, of course,
be & smaller percentage. A similar trend probably holds for edges
of different curvature.

APPLICATIONS

As examples of the method, the 1lift distributions 2Cp/a of a

circular-plan-form wing and a straight wing with a circular tip are
shown in figures 13 and 14, respectively, at M =4/Z,

For the circular wing, in the reglon inboard of station D, the
pressure at a glven chordwise station increases in the outhoard
direction. For a glven spanwise station, the pressure is a maximum
at the leading edge and drops off in the flow direction. The rate
of this decrease is & minimum &t the wing root.

Lines of constant pressure for the clrcular-tip wing swept

back 30° gt a Mach number of 42 are shown in figure 1l4. The

" Kutta~Jdoukowskl condition weas assumed for anslysis of reglons
influenced by the subsonic trailing edge. The only reglon of high
pressures and high pressure gradients is a small leading-edge
reglon between the tangency of the foremost Mach wave and the start
of the subsonic trailing edge. The pressure gradient over most of
the tip 1s roughly in the spanwise direction.

CONCLUDING DISCUSSION

A graphical method based on linearized supersonic-flow theory
has been developed for calculating the l1lift distributions on thin
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wings at supersonic speeds. The method is applicable to all of the
regions of arbltrary wings except those affected by interacting
flow flelds off the wing-plen boundaries. The determination of

the lifting-pressure coefficient for a given point has been found
to require 5 to 10 minutes with a resultant average error of leas
then 1 percent as determined by comparison with kmown analytical
golutlons,

Flight Propulsion Research Laboratory, _
Netional Advisory Committee for Aeromautics,
Cleveland, Ohio, May 13, 1948.
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APFENDIX A

CONTRIBUTION TO CP OF LEADING-EDGE SEGMENT
INCLUDED IN STRIP OF WIDTH ¢
In order to determine the contribution to Cp of a segment of

width ¢, +the integral of equation (1) must be evaluated. In the
X,y coordinate system, this integral is

AC = = gg’f dn (A1)
PUm Mz - )2 -8 (3 - )2

The integral 1s comsidered in the region near

(x - £)2 <82 (y - ng)2 = 0 (az)

The subscript O refers to the point of intersection of the grid
edge and the wing-plan boundary. In particular, the positive root
that defines the left forward Mach line from the point &,y is

(x - ) =B (7 - np) =& (w - ) (a3)

Treetment of ¢ as a variable in the vicinity of the point
(ng, £5) vields

n=7Tg + ¢ A
E=to+ 5 +ale)
where (a4)
_(a ’
== (&),
and
Q(e) = age? + a.3€5 + a4e4 + 0 0 J
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Substitution of equation (A4) in equation (Al) gives

=x(4%p) i/ e = —  (85)
0 '/F:- to-lﬁ-Q(e):lz-Bz (- no - &7

Now, if Q(e€) = O, +the leading edge is straight and the inte-
gral may be written

€
- £ (acp) =[ de
0 2 pa 2 -
‘Ggﬁ%JL)e+[”2‘Ytﬂd"(xmgoﬂ

m

(48)

which becomes

1
ACp = - 2a &m tan~L 2fm (vw - vo) - 1J 2
" | V@e - 1)(@s + 1) Me (1 + pm)
(a68)
From equation (5) of the text,
Fp = - 32 (AC,)
.1
2fm (v = v,) 2
= AP tan~1 ¥ 9% (A7)
MY (@B - 1)(mp + 1) Me (1 + pm)

This function, which is equation (4) of the text, 1s shown in fig-
ure 8 for various values of 6 and (v - vo)/e for M =42,

If the leading edge is curved, Q(¢) # O and equation (A5)
must be rearranged. The quantity in the radical may be expressed
as : ’

972
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“ (-3

where

(c' +d_'€)€= I:ZBZ (y_no)_.z_ix-___g_q!] +(_]_'.._BZ)€ €

al = m o
bra2(x-tg) e-2(5)a-a
2 (x-Eg)(mp - 1)
¢t = e
a1 o {3 - m@ p2) (48)

mé

Then equation (AS) may be written

- X (ACP) _fe de
2a - / 1
0 #Ya! 1l- '.:j'

Expended in & powexr seriles,

2
1 1 Dbt 1 3 /bt
=1+§;T+§><z(a—') e

'bl
V- a7

Equation (AS) then becomes

1b' 1,3(p"\2 ]
- = (acp) = e.‘l€_+f€[2a'+'5x3<?) M b

(A5e)

The first term is identical with the integral of equation (AS).
The contribution of the curvature to Fp may therefore be written
as
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The expressions for ;:—: and in equation (AS) may be

_.1
4/_...-
expanded In a power sexries to yleld

at

b - {[ (x - Eglazle + [(x - tolag - -2 - £ (x - Eo)ag] €@

[(x “todeg - 2 a2 - (&) (x- toles + (%) 2

R S 1
Yar 4/?40,(1_'_2% <)
__1__1_[1_;<£) +;x_s.(g_')2€z_;x§x§(g)5es+...J
SNE Vot 2\c"/¢T 27 3 \c" 27278 \o
where
a' . =(1+mp) (a10)
° an(x'go)

Upon substitution of equation (Al0) in equation (AS) and multi-
plication and collection of terms according to powers of ¢, there
results .

2L8
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€
<3Cl€ o+ o e c) d_e

3 7
(cle? + 0g2 + Cz€% + + & ) (A9a)

1=
1[3]
ol

[\V]
[\M)

=
P
Q|
ol
2

AFz = + 5C2€ + 7C3€

len
)]

1o
where

Cy =-3]5 (x - go)az

- ' 2
l[——-———(sﬁm Lez +|:a3 + —-——4382 - ](x = £o)

Q
n
]

S 4m (pm - 1)
o . 1)3(m + 1)(5pm - S)ap (7m - 1)ag? , (36m - )2
7] saP(x - o) 16(fm - 1) 4
B 3.2
Sagazn Sax"m
- ALl
+_a4+2(ﬁm'l)+e(ﬁm-1)2 (x - &g) (a11)
04 = o o .

The series of equation (A9a) converges as long as Db'/a' and
d'e/ct (defined by equations (AS) and (A10)) are less than unity.
For rapid convergence, these ratlos should both be small.

As & particular example (teken at M =’\f§), the leading-edge
curve may he represented by the parabola

= +_€.+a€2
t= & = +ag

The coefficients of equation (All) evaluated in terms of the oblique
coordinate distances then become
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Cy = % (v - vo)a,2

r-(.'fvm - l)ap 3NZ azzm(vw - vo)
+

Co =
25 Mm 8(m - 1) -

1 (34/2(m + 1)(5m - 3)ay  (Tm - 1)ag® 542 a,%0(v, - Vo)
Cz = = + +
ST | 32m® (v - V) 16(m - 1) 16(m - 1)%
Cy=+ o

¥hen the values of the coefficients are substituted in equation (ASa),
AF,> results,

For a parabole with & given initlal slope m at the point
(§0, mp), the quantity ap controls the radius of curvature Iy,
at that point. The ratio AF,/F; represents the relative error
resulbting from the assumption of a stralght leading edge for a
wildth € when the actual edge 1s curved. This value from equa-
tions (A7) and (ASa) has been plotted against the ratio €_/ro‘ in

figure 12.
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APPENDIX B

TREATMENT OF COMPLETE WINGS

A tsbular summation of the various flow fields encountered in
wing problems is presented in table II and the graphical solution
in each reglon is indicated. In the reference sketches for
M =42, P is the point at which the pressure coefficient is to be
evaluated. The numerical line Integration along the supersonioc
leading edge 1s performed from polnt a +o point b. The direc-
tion of integration of the line integrals is Indicated by arrow-
heads on heavy lines. For a subsonic trailing edge (sketches C, ¥,
G, H), the Kutta-Joukowski condition was imposed and made Fq = O
for that edge. The factor F, vanishes when the 1limit of the
leading-edge line integral is other than the integration-grid edge
(sketches D, E, F, G, H), because no infinities are then encountered.
When the forwerd-reflected Mach lines from the point P cross on
the wing surface (sketches E, F), the integration H is considered
negative.

The occurrence of these flow flelds on a schematic wing is
1llustrated in figure 15. BEach flow reglion is identified by the
corresponding letter from teble II. In this example, flow
reglon H does not occur.

As an example of the method, -numerical calculations of the
pressure coefficlent at point P for the wilng boundary shown in
figure 10 are

N\

61 = 7.5°

bec = 0.0419

— F, = 0.224
od = 0.084 > 1

= 0,4988

oV
u
allgl
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6, = 125.5°

€ 0.01

0.01 [(0.4)(31) + 25.0 + 21.0 + 18.85 + 17.55

+ 16,75 + 16.50 + 16.6] = 1,446

+ ff. (H + Py + Fp)= 1.048

1676
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APFENDIX C

SIMPLIFYING CONSIDERATIONS IN APPLICATION OF METHOD

A simple method of obtaining coordinates of hyperbolas to con-
struct an integration grid employs log-log graph peper. If a
streight line of slope equal to ~1 is drawn on this paper, the
cooriinates of this line, when plotted in Cartesian coordinates,
describe the desired equilateral hyperbola.

The addltlon to the grld of lines of constant v and u
(parallel to the grid edges) with accompanying scales at the grid
edges increases the rapidity of evaluation, because all signifi-
cant dlstances may then be read directly. A part of the grid
employed is given in figure 7.

In choosing the value of €, +the first consideration is that
€ be large enough that the value of h may be easily determined
for the first subsequent element. It 1s also seen from figure 8
that if € 1s taken as a sgimple decimal such as 0.01 or 0,02, and
(vw - vo) is known, the ratio (vW - vo)/ € may be rapldly computed
and hence Fp 1is rapidly determined. From figure 6, point =
will not, 1n general, fall at an integral multiple of A7n; then,
if € = NAn where N 1is an integer, point a' will not, in
general, fall on an Integral multiple of An. Thus a section whose
width is less than An appears before the first complete leading-
edge eolement and remainsg to be included in the numericel lntegra-
tion., If this small element is evaluated in the normal manner and
weighted according to 1lts width, no discrepancy will occur. This
welghting process is illustrated by the example presented in
appendix B.

The most prevalent personal error in the application of the
method was in the measurement of angles 67 and 6z, Dbecauss
on smell drawings it is difficult to Judge accurately the tangency
of a curve, Large-scale drawings are therefore recommendied foxr
measuring the angles. These drawings may also be used for the
integration, although the increase ln acouracy may not Justify the
accompanying inconvenience.

For a straight supersonic leading edge, equation (1) is
integrable and the expression for Cp becomes
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oo talfy T\ [merEe Bl [y - vp)
PT  xB avy, W, = Ug i Vi + Uy

(c1)

In the region affected by the subsonic tralling edge (region abe
of vigs. 16 and 17) the first term in equation (Cl) venishes if
the Kutta-JdJoukowskl condition is imposed. The quantity in the
radical of the arc-tangent term 1s proportional to the ratio of
distences ©P/f8 (fig. 16) and hence any wing composed of the
same leading edge and a stralight line through point & would glve
the same value of Cp for any point on line 8P, If lines of

constant pressure are desired, the arc-tangent term in equa-

tion (Cl) must be differentisted and set equal to zero, The result
involves a derlvatilve duz/hvw, which 1s determined by the slope
of the edge at point s. Equivalent lines of constant pressiwre
along line sP wmay thus be obtalned by replacing the tip by a
shralght-line tip that 1ls tangent at point s&. The pressure along
any v = constant 1llne 1is therefore conlcal about a point deter-
mined by the intersection of the extension of the leading edge and
the tangent to the tip at wup(vy,). Along v=v; and v = Vo
(fig. 17), the constant-pressure lines are conical about points tq
and tp. By thls relation, the constant-pressure lines may be
quickly comstructed and evaluation is necessary only along one line
of constant X to determine the pressure field. The relation holds
only in the reglon influenced by the subsonilc trailing edge when
the Kutta-Joukowskl condition applies, for differentiation of
equation (Cl) with the first term included yields & second deriv-
ative that generally cannot be ewaluated from straight~-line
relations. :
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TABLE I
VALUES OF Cp/o OBTAINED FOR WINGS A AND B
Wing A Wing B
Cp /e Error Cp/a Error
Statloniu v L (percent) P (percent)
Anelytic|Graphic Analytic|Graphic
1 80| 2.4570 | 2.468 0.44 2.457 2.447 0.16
2 7i{1| 2.1354 | 2.148 .99 1.866 1.875 .48
3 6|2 1.9826 | 1.975 .38 1.674 1.679 .30
4 5|5 1.8577 | 1.871 71 1,578 1.584 .38
5 414 1,7861 | 1,775 .62 1,744 1.733 .63
6 35| 2.3877 | 2.400 .52
7 8|2| 2,0395 | 2.033 .32 1,775 1.759 .90
8 713} 1.9295 | 1.933 .18 1.689 1.682 .41
9 64| 1.8367 | 1.827 .53 1.676 1.870 .36
10 55| 1.7861 | 1.797 .81 1.862 1.865 .18
11 46| 2,0147 | 2,012 .13
Average 0.46 0.42
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‘TABLE II - PRESSURE COEFFICIENT FOR EACH WING REGION

Referonce figure

Pressure coefficlient

Special features

3 b

E

Ma
o, = 'EB'[I“ F2+F2’x]

Affected only by supersonic
leading edgs.

Mo
Gpﬂ W[H + Fl + Fz]

Affected by subsonlc and
supersonic leading
edges,

Cp = %‘[ﬁ + Fg]

Affected by subsonic trail-
ing and supersonioc lead-
ing edges. EKutta-
Joukowskl condition
imposed. Fp = O.

= Mo
Cp= ﬁ[rn Fy+ Fl.’;]

Affected by supersonic and
both subsonic leadin%
edges., F,y,; found for
strip ad in same manner
as F, Cfor strip Bec.

For Fl,l use R = ad

and measure 03 . clock-

wise at point d.

Ma
cp = E[-H-I— Fq +Fl,l]

Affected by supersonic and
both subsonic leading
edgea, Fy ; determined

as for reglon D with

s
R; ‘5’.

NACA
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TABLE II - PRESSURE COEFFICIENT FOR EACH WING REGION - Concluded

23

T¥R21S

Reference figure

Pressure coefficlent

Special features

Mg
Cp = ‘K—ﬁ[-H + Fl,:]

Affected by one subsonic
leading and one sub-
sonlc tralling edge.
Fy,7 determined as

previously with Ry = oe

Kutta-Jowkowski con-
dition Imposed on sub-
sonic tralling edge.
Fq = 0.

-3 ]

fected by both subsonic
tralling edges, Kutta-
Joukowskl condition
imposed.

F= Fl,l = 0.

%= 5[]

pffected by both subsonic
tralllng edges. EKutta-
Joukowski condition
imposed,

Fl = Fl’z = 0,

Bhaded reglon is affected
by externally interact-
ing flow flelds.
S8olution not handled
by graphical method.




24 NACA TN No. 1676

A Region influenced by

supersonic leading edge U
B Region influsenced by

subsonic leading edge
c Reglon influenced by

subsonic trailing edge

Supersonic leading edge

Subsonic

Subsonic
tralling
edge

Supersonic
tralling

edge -

Figure 1, - Illustration of wing reglons.
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> YT

Figure 2, = Relation between obllique and Cartesian
coordinates,
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Figure 3. =

NACA TN No.

Geometric interpretation of terms Iin equation (1),
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(a) Wing A, | {(b) Wing B.

Figure 11, - Wings used for comparison of graphlcal and closed-form
solutions.
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Supsrsonio
leading edge

Two-dimensional regime

5% = 4.90

\sublonio

tralling
adge

Superaonioc
trailing
edge

Pigure 1l4..~ Iift distribution for M aﬁ on circular-tip wing swept baok at 50°.
2%? on gubsonic leading edge = oo, on subsonic trailing edge = 0.
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Flow

gupersonic leading edge

Subsonic___/’///»¢//”
leading
edge

Flgure 15. - Wing illustrating regions considered in table II.
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v ==kju

Pigure 16, - Wing with subsonlc tralling edge and
straight supersonic leading edge.

< Cd

Figure 17. - Determination of constant-pressure lines for wing with
straight supersonic leading edge in region influenced by subsonic
trailing edge.
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